This paper proposes rigid-body modelling and identification procedures for long-reach dual-arm manipulators in a cable-suspended pendulum configuration. The proposed model relies on a virtually constrained open kinematic chain and lends itself to be simulated through the most commonly used robotic simulators without explicitly account for the cables constraints and flexibility. Moreover, a dynamic parameters identification procedure is devised to improve the simulation model fidelity and reduce the sim-to-real gap for controllers deployment. We show the capability of our model to handle different cable configurations and suspension mechanisms by customising it for two representative cable-suspended dual-arm manipulation systems: the LiCAS arms suspended by a drone and the CRANEbot system, featuring two Pilz arms suspended by a crane. The identified dynamic models are validated by comparing their evolution with data acquired from the real systems showing a high (between 91.3% to 99.4%) correlation of the response signals. In a comparison performed with baseline pendulum models, our model increases the simulation accuracy from 64.4% to 85.9%. The simulation environment and the related controllers are released as open-source code.