Benefiting from easy visualization and simultaneous detection of multiple targets, fluorescence microbeads are commonly used as fluorescence-sensing elements to detect pollutants in the environment. However, the application of fluorescence microbead-based sensor arrays is still limited because fluorescence dyes always suffer from self-quenching, photobleaching, and spectral overlap. Herein, three kinds of gold nanoclusters (Au NCs) were assembled with polystyrene microspheres (PS NPs) by electrostatic interaction to prepare fluorescence microbeads (PS-Au NCs), developing a sensor array for the simultaneous analysis of multiple metal ions. In this work, different PS-Au NCs showed an enhancing or quenching fluorescence response to various metal ions, owing to distinct binding capacities. Combined with the recognition algorithm from linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA), this sensor assay could realize single-component and multicomponent qualitative detection for 8 kinds of heavy metal ions (HMIs) including Cu2+, Co2+, Pb2+, Hg2+, and Ce3+. Particularly, the large surface area of PS NPs could provide a direct reaction microenvironment to improve the efficiency of the detection process. Meanwhile, the fluorescence property of Au NCs could also be enhanced by a partially effective aggregation-induced emission (AIE) effect to give better fluorescence signal output. Under optimal conditions, 8 kinds of heavy metals and their multicomponent mixtures could be identified at concentrations as low as 0.62 μM. Meanwhile, the analytical performance of this sensor assay in water samples was also verified, meeting the requirement of actual analysis. This study provides a great potential and practical example of single-batch, multicomponent identification for HMIs.
Read full abstract