Chlorpyrifos (CPF) as a classic organophosphorus pesticide has been widely used in agricultural applications to control insects and worms. CPF in the environment can cause deaths of diverse kinds of aquatic organism and bring a high risk to human health. Therefore, the development of effective analytical method for CPF is of great importance. In this work, a novel dual-mode albumin (ALB)-based supramolecular probe FD@ALB was designed and prepared for rapid detection of CPF in the environment. The limit of detection is 0.57 μM (∼ 0.2 ppm) with a wider detection range up to 200 μM, which is satisfactory for application. The sensing mechanism can be ascribed to CPF-induced phosphorylation of ALB, thus leading to a change in the binding microenvironment of FD dye. Moreover, the paper-based test strips were used in conjunction with the FD@ALB, realizing the portable detection of CPF. This method was demonstrated to be suitable for on-site detection of CPF in various kinds of environmental samples, including water, soil, and food samples, with the aid of a smartphone. To the best of our knowledge, this is the first analytical method achieving a combination of the rapid and ratiometric detection of CPF in the environment.
Read full abstract