Cement production is a major consumer of energy and the largest source of industrial CO2 emissions. This study aims to perform an environmental life cycle assessment of clinker and cement production in Ethiopia, using ReCiPe impact assessment method. Inventory data (material, energy, and transportation) is collected from seven major Ethiopian cement industries. The midpoint analysis identified nine hotspot environmental concerns: global warming, ozone formation (human health and terrestrial ecosystem), particulate matter formation, terrestrial (acidification and ecotoxicity), freshwater eutrophication, human carcinogenic toxicity, and fossil resource scarcity. Human health emerged as the most significantly affected endpoint damage category by the midpoint impacts. Among the process stages included in clinker system boundary, clinker production phase (kiln emissions) is a significant contributor to the total score of the hotspot impacts, ranging from 60.7% to 91.8%. The clinker system is responsible for over 81.03% of the overall environmental burden of cement. The sensitivity analysis reveals that a 5% change in kiln energy consumption and transportation burden could lead to a reduction in hotspot impacts ranging from 1.8% to 5%. To foster reliability of this study, uncertainty analysis is also conducted. Overall, the findings indicate the need to enhance environmental sustainability in Ethiopian cement production.
Read full abstract