On an n-dimensional compact, orientable, connected Riemannian manifold, we consider the curvature operator acting on the space of covariant traceless symmetric 2-tensors. We prove that, if the curvature operator is negative, then the manifold admits no nonzero conformally Killing p-forms for p = 1, 2, …, n − 1. On the other hand, we prove that the dimension of the vector space of conformally Killing p-forms on an n-dimensional compact simply-connected conformally flat Riemannian manifold (M,g) is not zero.