The challenge of understanding the physical mechanisms behind porosity reduction by a magnetic field during laser beam welding (LBW) is partly due to the difficulty in quantitatively evaluating keyhole stability. The commonly used index, such as keyhole depth, is typically one-dimensional, which is insufficient to capture the dynamic and three-dimensional fluctuations of the keyhole. In this paper, by utilizing a 3D multiphysical model of LBW with magnetic field, a novel keyhole geometry reconstruction algorithm has been developed to describe the keyhole profile and its fluctuation in a statistical manner to evaluate keyhole stability quantitatively. An equivalent diameter is proposed in this algorithm to reduce the irregularity of the keyhole geometry. The calculation results indicate that the time-averaged keyhole shape over 300 ms in the LBW of steel is conical, regardless of the application of an external magnetic field, which provides a more representative shape. Meanwhile, it is observed from the statistical aspect that the keyhole diameter becomes smaller, except the top part, under the influence of the magnetic field. The standard deviation of the equivalent diameter can be used as a physical variable to assess the keyhole stability quantitatively. The application of an external magnetic field can produce a noticeable reduction of the standard deviation of the equivalent diameter, namely, stabilizing the keyhole during LBW of steel. However, the different contribution from the keyhole stability affected by a magnetic field in suppressing porosity is different with materials.
Read full abstract