In underground coal extraction of fully mechanized caving, the overlying hard–thick sandstone main roof could control the failure extent and the movement evolution of the entire overburden strata. The instantaneous failure of the hard–thick sandstone main roof possibly causes strata pressure behaviors, rock-bursts and abnormal gas emissions, which may result in equipment damages and casualties. Tashan coalmine was chosen as a field case study base because of its super great mining height (SGMH) and the overlying hard–thick sandstone roof (HTSR). This mine has experienced a great deal of damaging hydraulic support and abnormal gas emission accidents caused by strata pressure behavior. The fracture failure analysis was analyzed based on “Key Strata Theory” and numerical simulation results. The hard–thick sandstone main roof could perform as a very large double-sided embedded rock beam in the primary fracture and as a cantilever-articulated rock beam in periodic fracture, simultaneously generates a huge hanging space in the gob. The fracture failure of the hard–thick sandstone main roof causes a permeability enhancement in the adjacent rock-coal strata and near face coal seam. The substantial amounts of gas stored in the remaining coal, surrounding rock strata and adjacent coal seams rush out and aggregate in the caved and fissure zone of the gob, thereby forming a huge gas cloud. The disasters due to coupled strata pressure behavior and abnormal gas emissions, which primarily occurred after primary and periodic fracture failure, are predominantly caused by the instantly fracture of main roof. When the main roof reached the ultimate broken span and underwent, rotation and collapse, substantial amounts of gas accumulating in the gob escaped to the working face under the extrusion and impaction of the caving rock strata, which easily produced abnormal gas emissions, some of which exceeded the statutory limit. Shortening the length of the HTSR failure span using hydraulic presplitting and decreasing the gas content of the coal seam using gas drainage technology are recognized as two effective approaches to solve this issue.