BackgroundDyslipidemia in schizophrenia causes a serious loss of healthy life expectancy, making it imperative to explore key environmental risk factors. We aimed to assess the effect of PM2.5 and its constituents on dyslipidemia in schizophrenia, identify the critical hazardous components, and investigate the role of impaired thyroid hormones (THs) sensitivity in this association. MethodsWe collected disease data on schizophrenia from the Anhui Mental Health Center from 2019 to 2022. Logistic regression was constructed to explore the effect of average annual exposure to PM2.5 and its components [black carbon (BC), organic matter (OM), sulfate (SO42−), ammonium (NH4+), and nitrate (NO3−)] on dyslipidemia, with subgroup analyses for age and gender. The degree of impaired THs sensitivity in participants was reflected by the Thyroid Feedback Quantile-based Index (TFQI), and its role in the association of PM2.5 components with dyslipidemia was explored. ResultsA total of 5125 patients with schizophrenia were included in this study. Exposure to PM2.5 and its components (BC, OM, SO42−, NH4+, and NO3−) were associated with dyslipidemia with the odds ratios and 95 % confidence interval of 1.13 (1.04, 1.23), 1.16 (1.07, 1.26), 1.15 (1.06, 1.25), 1.11 (1.03, 1.20), 1.09 (1.00, 1.18), 1.12 (1.04, 1.20), respectively. Mixed exposure modeling indicated that BC played a major role in the effects of the mixture. More significant associations were observed in males and groups <45 years. In addition, we found that the effect of PM2.5 and its components on dyslipidemia was exacerbated as impaired THs sensitivity in the patients. ConclusionsExposure to PM2.5 and its components is associated with an increased risk of dyslipidemia in schizophrenia, which may be exacerbated by impaired THs sensitivity. Our results suggest a new perspective for the management of ambient particulate pollution and the protection of thyroid function in schizophrenia.