Carbon capture is a key approach to manage carbon dioxide (CO2) emissions and promote net removal of CO2 from the atmosphere. Post combustion flue gas emissions from power plants contribute a significant fraction of CO2 released into the atmosphere. Membrane-based separation strategies offer environmentally sustainable and economically viable solutions for efficient CO2 capture from power plants. Facilitated transport membranes, although showing strong capability for CO2 capture at low concentrations and under humid conditions, suffer from the loss of facilitators, such as amines, leading to decline in performance over long-term operation. Ionic liquids (ILs) are chemically and thermally stable and have low vapor pressure, which is ideal to prevent aforementioned losses. However, making a thin network for effective IL confinement is still a challenge. In this work, we developed a stable high performing IL based CO2 selective membrane that can operate at temperatures as high as 80 °C under humid conditions. An amino acid-based IL (containing facilitated carriers), 1-ethyl-3-methylimidazolium glycinate, [EMIM][GLY], was used as the separating agent. In order to selectively load and confine the IL in a thin selective layer, we designed and fabricated a network composed of stacked graphene oxide (GO) nanosheets intercalated by carbon nanotubes (CNT). While CNT acts as a nanowedge that helps in increasing the nanochannels to facilitate low-resistance gas transport, GO nanosheets act as anchoring sites due to presence of various functional groups resulting in electrostatic interaction between GO and cation of IL. Due to the aforementioned reason, distribution of GO in the network plays a critical role in forming a thin, uniform selective IL layer. The GO distribution was optimized by adjusting the pH of the coating solution; after optimizing IL coating, this results in a thin, defect free selective layer, providing a membrane with high CO2 permeance of ∼1600 GPU and CO2/N2 selectivity of 400, superior to most of the reported IL membranes. This network composed of GO/CNT network not only facilitates fabrication of a stable, ultrathin, high permeance and high selectivity supported IL membrane but also provides a platform for preparation of other IL-based membranes for desired separations.