Enhancing the utilization efficiency of oxidant is of great importance for advanced oxidation processes (AOPs). Herein, nitrogen-doped titania dioxide/carbon (NTC7) catalyst was fabricated via pyrolyzing NH2-MIL-125 under nitrogen atmosphere at 700 °C. Excitation of NTC7 under visible light can successfully achieve efficient activation of peroxymonosulfate (PMS) (NTC7 + PMS + Vis). Degradation performance and PMS activation mechanism were systematically investigated using sulfamethazine (SMT) as the target pollutant. It was found that the photo-generated electrons excited from NTC7 under visible light played the dominant role in enhancing the productive consumption of PMS. Its utilization increased by 66 % (Δ[PMS]/Δ[SMT] = 7.0) in NTC7 + PMS + Vis process and the degradation rate was 2.14 times higher than that of NTC7 + PMS process. The ketonic CO groups and structural defects were responsible for the generation of 1O2 in dark activation while radicals (•OH, O2•–) were more inclined to be continuously produced in NTC7 + PMS + Vis process. The involved degradation pathways, intermediates, and toxicity assessment have been studied in detail. This work provides an effective approach to enhance the utilization efficiency of oxidant for pollutant degradation by AOPs.
Read full abstract