Abstract

Active sites on catalyst surface play significant roles in oxidative species formation. The work focused on the regulation of main active sites on catalyst surface and oxidative species formation. Herein, sewage sludge (SS)-red mud (RM) complex biochar (SRCB) and N-functionalized SRCB (NSRCB) were served as activators of peroxymonosulfate (PMS) for sulfanilamide (SMX) degradation. Specially, NSRCB-1 showed excellent catalytic performance with 97.5% removal of SMX within 110 min. Additionally, the effects of N incorporation on the reconstruction of N species, conversion of intrinsic Fe species and ketonic CO groups in SRCB were studied systematically. Both radical (hydroxyl radicals (OH), sulfate radicals (SO4−) and superoxide radical (O2−)) and non-radical (electron transfer and singlet oxygen (1O2)) pathways were confirmed by quenching experiments, electron paramagnetic resonance (EPR) testing and electrochemical measurements. Ketonic CO groups, pyridinic N and pyrrolic N were responsible for non-radical pathway in SMX degradation process. Besides, Fe(II) modulated by N-doping was the main actives site for radicals generation. The contribution of active sites on catalyst surface to oxidative species formation provided fundamental basis for practical water treatment in PMS process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call