A marine bacterial strain, named NTOU-MSR1T, was isolated from marine sediment of northern coast of Taiwan. This bacterium was Gram-stain-negative, aerobic, and motile, with a single flagellum. Its rod-shaped cells measured approximately 0.5-0.6µm in width and 1.8-2.0μm in length. NTOU-MSR1T grew at temperatures ranging from 10 to 45°C, optimally at 30°C. The pH range for growth was 7.0-10.0, with optimal growth at pH 7.0-8.0. It tolerated NaCl concentrations up to 12%. The cell membrane predominantly contained fatty acids such C16:1ω7c, C18:1ω7c, and C16:0. The overall genome relatedness indices indicated that strain NTOU-MSR1T had an average nucleotide identity (ANI) of 87.88% and a digital DNA-DNA hybridization (dDDH) value of 35.40% compared to its closest related species, O. marisflavi 102-Na3T. These values fell below the 95% and 70% threshold for species delineation, respectively. These findings suggested that the strain NTOU-MSR1T was a new member of the Oceanimonas genus. Its genomic DNA had a G + C content of 61.0mol%. Genomic analysis revealed genes associated with the catechol branch of β- ketoadipate pathway for degrading polycyclic aromatic hydrocarbons, resistance to heavy metal, biosynthesis of polyhydroxybutyrate and the production of glycoside hydrolases (GH19, GH23, and GH103) for chitin and glycan digestion. Additionally, NTOU-MSR1T was capable of synthesizing biosurfactants and potentially degrading plastic. The proposed name for this new species is Oceanimonas pelagia, with the type strain designated as NTOU-MSR1T (= BCRC 81403T = JCM 36023T).
Read full abstract