AbstractHydrocarbon generation can yield high fluid pressures in sedimentary basins as the conversion of solid kerogen to hydrocarbons can result in an increase in fluid volume. To quantify the relationship between gas generation and overpressure in source rocks, a set of equations for computing the pressure change due to gas generation has been derived. Those equations can be used to quantitatively estimate overpressure generated by type III kerogen in source rocks by considering gas generation and leakage, gas dissolution in formation water and residual oil, thermal cracking of oil to gas, and hydrocarbon episodic expulsion from source rocks. The equations also take consideration of other factors including source rock porosity, transformation ratio, total organic carbon (TOC), hydrogen index, and compressibility of kerogen, oil, and water. As both oil and gas are taken into account in the equations, they can also be used to estimate the evolution of overpressure caused by hydrocarbon generation of type I and type II kerogen source rocks. Sensitivity analyses on the type III kerogen source rock indicate that hydrogen index is the most influential parameter for overpressure generation, while TOC and residual gas coefficient (β: ratio of residual gas over the total gas generated) have a moderate effect. Overpressure can be generated even if the gas leakage/loss in the source rock is up to 80% of the total gas generated. This suggests that the internal pressure seal of the source rock is not a critical factor on the pressure change as long as the source rocks are capable of sealing liquid oil. The equations were applied to evaluate the overpressure in the Eocene–Oligocene Enping Formation source rocks due to hydrocarbon generation in the Baiyun Depression, the Pearl River Mouth Basin by considering the source rock properties, hydrocarbon generation history, and hydrocarbon expulsion timing. Two episodes of overpressure development due to gas generation and release were modeled to have occurred in the Enping Formation source rock since 16 Ma. The overpressure release at 10.2–5.3 Ma via hydrocarbon expulsion was apparently related to the Dongsha phase of tectonic deformation, whereas the pressure release at 2–0 Ma was due to pressure generation that was exceeded the fracture‐sealing pressure in the source rocks.
Read full abstract