Tactile sensors play very important role for robot perception in the dynamic or unknown environment. However, the tactile object recognition exhibits great challenges in practical scenarios. In this paper, we address this problem by developing an extreme kernel sparse learning methodology. This method combines the advantages of extreme learning machine and kernel sparse learning by simultaneously addressing the dictionary learning and the classifier design problems. Furthermore, to tackle the intrinsic difficulties which are introduced by the representer theorem, we develop a reduced kernel dictionary learning method by introducing row-sparsity constraint. A globally convergent algorithm is developed to solve the optimization problem and the theoretical proof is provided. Finally, we perform extensive experimental validations on some public available tactile sequence datasets and show the advantages of the proposed method.