Psoriasis is a chronic inflammatory skin disease characterized by abnormal keratinocyte proliferation and terminal differentiation. Interleukin-22 (IL-22) and the transcription factor Stat3 play pivotal roles in the pathogenesis of psoriasis. CD147 is a transmembrane glycosylation protein that belongs to the immunoglobulin superfamily. Our previous studies have shown that CD147 is a marker of high keratinocyte proliferation and poor keratinocyte differentiation as well as a psoriasis susceptibility gene. The current study demonstrates that CD147 is highly expressed in psoriatic skin lesions. Specific CD147 over-expression in the epidermis of K5-promoter transgenic mice promotes imiquimod (IMQ)-induced psoriasis-like inflammation characterized by acanthosis, granular layer loss and inflammatory cell infiltration. We also found that IL-22 increases CD147 transcription in vitro and in vivo and that Stat3 binds directly to the CD147 promoter between positions −854 and −440, suggesting that CD147 expression is up-regulated in patients with psoriasis through Stat3 activation. In addition, CD147 knockdown dramatically blocks IL-22-mediated Stat3 activation as well as IL-22-induced cytokine, chemokine and antimicrobial factor expression. Together, these findings show that CD147 is a novel and key mediator of IL-22-induced psoriatic alterations in the epidermis and might be a therapeutic target in patients with psoriasis.
Read full abstract