Biodegradable shape-memory polymers derived from protein substrates are attractive alternatives with strong potential for valorization, although their reconstruction remains a challenge due to the poor processability and inherent instability. Herein, based on Maillard reaction and immobilization, a feather keratin fibrous adsorbent featuring dual-response shape-memory is fabricated by co-spinning with pullulan, heating, and air-assisted spraying ZIF-8-NH2. Maillard reaction between the amino group of keratin and the carbonyl group of pullulan improves the mechanics and thermal performance of the adsorbent. ZIF-8-NH2 immobilization endows the adsorbent with outstanding multipollutant removal efficiency (over 90%), water stability, and photocatalytic degradation and sterilization performance. Furthermore, the adsorbent can be folded to 1/12 of its original size to save space for transportation and allow for rapid on-demand unfolding (12 s) upon exposure to water and ultraviolet irradiation to facilitate the adsorption and photocatalytic activity with a larger water contact area. This research provides new insight for further applications of keratin-based materials with rapid shape-memory features.
Read full abstract