Abstract

Human hair keratins are readily available, easy to extract, and eco-friendly materials with natural bioactivities. Keratin-based materials have been studied for applications such as cell culture substrates, internal hemostats for liver injury, and conduits for peripheral nerve repair. However, there are limited reports of using keratin-based 3D scaffolds for cell culture in vitro. Here, we describe the development of a 3D hair keratin hydrogel, which allows for living cell encapsulation under near physiological conditions. The convenience of making the hydrogels from keratin solutions in a simple and controllable manner is demonstrated, giving rise to constructs with tunable physical properties. This keratin hydrogel is comparable to collagen hydrogels in supporting the viability and proliferation of L929 murine fibroblasts. Notably, the keratin hydrogels contract less significantly as compared to the collagen hydrogels, over a 16-day culture period. In addition, preliminary in vivo studies in immunocompetent animals show mild acute host tissue response. These results collectively demonstrate the potential of cell-loaded keratin hydrogels as 3D cell culture systems, which may be developed for clinically relevant applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call