We provide a posteriori error estimates for a discontinuous Galerkin scheme for the parabolic-elliptic Keller-Segel system in 2 or 3 space dimensions. The estimates are conditional in the sense that an a posteriori computable quantity needs to be small enough—which can be ensured by mesh refinement—and optimal in the sense that the error estimator decays with the same order as the error under mesh refinement. A specific feature of our error estimator is that it can be used to prove the existence of a weak solution up to a certain time based on numerical results.
Read full abstract