Present article explored the physical characteristics of biconvection effects on the MHD flow of Carreau nanofluid over upper horizontal surface of paraboloid revolution along with chemical reaction. The concept of the Carreau nanofluid was introduced the new parameterization achieve the momentum governing equation. Using similarity transformed, the governing partial differential equations are converted into the ordinary differential equations. The obtained governing equations are solved computationally by using implicit finite difference method known as the Keller box technique. The numerical solutions are obtained for the velocity, temperature, concentration, friction factor, local heat and mass transfer coefficients by varying controlling parameters i.e. Biconvection parameter, fluid parameter, Weissenberg number, Hartmann number, Prandtl number, Brownian motion parameter, thermophoresis parameter, Lewis number and chemical reaction parameter. The obtained results are discussed via graphs and tables.