Gansu zokor (Eospalax cansus) is a typical subterranean rodent species with resistance to ambient hypoxia. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling plays a key role in regulating redox homeostasis. However, little is known about the regulation of Nrf2 signaling in Gansu zokor. We exposed Gansu zokors and SD rats to chronic hypoxia (44h at 10.5% O2) or acute hypoxia (6h at 6.5% O2) andmeasured the activities of heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO-1),gene expression of HO-1, NQO-1, Nrf2, Kelch-like ECH-associated protein-1 (KEAP1), and β-transducin repeat-containing protein (β-TRCP) in the brain and liver. We found that Gansu zokor increased the NQO-1 protein content and activity, HO-1 protein content in the brain, and increased HO-1 activity and mRNA level, NQO-1 activity and protein content in the liver by up regulating Nrf2 gene expression under chronic hypoxia. Although acute hypoxia enhanced the expression of Nrf2 gene, only the level of HO-1 mRNA in the liver increased. Besides, the HO-1 and NQO-1 genes in the brain, HO-1 genes and NQO-1 mRNA in the Gansu zokor liver were significantly higher than those in SD rats under normoxia. Negative regulators of Nrf2 signaling were tissue specific: KEAP1 protein decreased in the brain, and β-TRCP decreased in the liver. The Nrf2 signaling and expression of downstream antioxidant enzymes were different under different oxygen concentrations, reflecting the flexible characteristics of Gansu zokor to deal with the hypoxic environment.