The increasing depletion of fossil fuel resources promote the study of conversion of renewable biomass resources to valuable chemicals. Formic acid (FA) is regarded as desirable liquid hydrogen carrier. Glycolic acid (GA) has been extensively used for the treatment of photoaging and wrinkles. It is meaningful to explore novel catalysts for the selective oxidation of bio-platform molecules into FA and GA. Keggin-type polyoxometalates (POMs) were firstly explored as catalysts for the oxidation of 1,3-dihydroxyacetone (DHA), which is an important biomass-based platform molecule, to obtain GA and FA in the presence H2O2.The effect of catalyst structure and composition, and the reaction conditions on DHA oxidation were investigated. Among the chosen compounds, Cs3PMo12O40 exhibited the best catalytic activity, with 86.4 % and 82.6 % yields of GA and FA, respectively. The five successive recycling experiments indicated that Cs3PMo12O40 had good stability and reusability. The catalytic activity of Cs3PMo12O40 was better than that of the other types of catalysts reported. This work give a clue for utilizing POMs as catalysts for the valorization of biomass derivatives to useful fine chemicals under mild conditions.
Read full abstract