Abstract
Keggin-type polyoxometalate (POM) supported single transition metal (TM) atom (TM1/POM) as an efficient soluble redox mediator for Li-O2 batteries is comprehensively investigated by first-principles calculations. Among the pristine POM and four kinds of TM1/POM (TM = Fe, Co, Ni, and Pt), Co1/POM not only maintains good structural and thermodynamic stability in oxidized and reduced states but also exhibits promising electro(chemical) catalytic performance for both oxygen reduction reaction and oxygen evolution reaction (OER) in Li-O2 batteries with the lowest Gibbs free energy barriers. Further investigations demonstrate that the moderate binding strength of Li2-xO2 (x = 0, 1, and 2) intermediates on Co1/POM guarantees favorable Li2O2 formation and decomposition. Electronic structure analyses indicate that the introduced Co single atom as an electron transfer bridge can not only efficiently improve the electronic conductivity of POM but also regulate the bonding/antibonding states around the Fermi level of [Co1/POM-Li2O2]ox. The solvent effect on the OER catalytic performance and the electronic properties of [Co1/POM-Li2O2]ox with and without dimethyl sulfoxide solvent are also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.