Keel bone fractures in laying hens have been described with increasing prevalence from several countries over the last twenty years and are considered one of the greatest welfare problems to the layer industry. In Denmark we have observed fracture prevalence in the range of 53% to 100% in flocks from cage-free systems whereas flock prevalences in birds from enriched cages ranged between 50–98%.Previous research have speculated that the underlying reason for the development of keel bone fractures is trauma in relation to impact of the bird with furniture, other equipment etc. However, little evidence of this theory has been provided. Predisposing factors have also been suggested including genetics of the bird, lack of specific feedstuff components, high egg production, management factors and layer fatigue.This study has addressed the possible pathogenesis of these fractures by pathological characterization of fractures in birds from different production systems. More than 60 keel bones with fractures have been characterized histo-pathologically and by CT scan. This included an assessment of damage to muscles and soft tissues, the bone and the healing process including callus formation. This investigation has shown that high energy collisions cannot be responsible for the majority of fractures, located at the caudal tip of the keel bone, observed in laying birds as markers associated trauma were not observed in the majority of the cases just as few recognized healing processes were observed. These results suggest an alternative pathogenesis to trauma.
Read full abstract