Herein, the ultrasound-assisted extraction conditions affecting the yield of EUPS (Eucommia ulmoides polysaccharide) were analyzed using a Box-Behnken response surface design. The alleviation effect of EUPS on diquat-induced oxidative stress in mice was also studied. A maximum EUPS yield of 2.60% was obtained under the following optimized conditions: an extraction temperature of 63 °C, extraction time of 1 h, and ratio of liquid to raw materials of 22:1. EUPS exhibited strong 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical-scavenging ability (87.05%), 2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radical-scavenging ability (101.17%), and hydroxyl radical-scavenging ability (62.92%). The administration of EUPS increased the activities of superoxide dismutase, catalase, and glutathione peroxidase and decreased malondialdehyde levels in the livers of mice exposed to diquat. EUPS may inhibit the downregulation of NAD(P)H:quinoneoxidoreductase 1 and heme oxygenase 1 mRNA expression in the livers of diquat-administered mice through the Nrf2-Keap1 signaling pathway. Moreover, the abundance of Firmicutes and Ligilactobacillus was enhanced, whereas that of Helicobacter decreased in the gut of the remaining groups of mice compared with that of the diquat-treated mice. Therefore, EUPS exhibited an antioxidant effect and improved oxidative stress and intestinal flora abundance in mice.