Metallic alloy fuels from fast reactors will be reprocessed by a non-aqueous electrochemical technique known as electrorefining. Electrorefining of spent metal fuel results in the accumulation of heat generating fission products especially 137Cs in the electrolyte, which is a eutectic salt mixture of 44 wt% LiCl and 56 wt% KCl. The fission products need to be removed from the salt so as to reduce the decay heat load and contamination thereby facilitating reuse of the salt and minimizing waste generation. Melt crystallization technique is a simple separation process being pursued for separation of fission products. This is a single step process which utilizes the difference in solubility of fission products in the solid and liquid phase. Crystallization involves purification of a substance from a liquid mixture by solidification of the desired component. Numerical modeling of separation of CsCl from a LiCl–KCl eutectic mixture by solidification was carried out using ANSYS Fluent (19.2). The enrichment of CsCl during solidification, its distribution in molten salt and segregation time were evaluated. Further, solidification experiments were conducted using the molten salt mixture and the predicted numerical results were validated.