Abstract

Benefiting from molten salts as reaction media, molten salt synthesis (MSS) offers advantages such as control of local reaction conditions to tailor material characteristics, the production of uniform and homogeneous crystallites, as well as reduced energy consumption and emissions. In this study, we successfully synthesized regular polyhedral La-substituted CaTiO3 with an orthorhombic perovskite structure under molten salt conditions, utilizing a NaCl–KCl eutectic mixture at 1073 K for 6 h. The phase compositions of the prepared samples were determined through powder X-ray diffraction (XRD), and their morphologies were characterized via scanning electron microscopy (SEM). Our investigation of the thermoelectric properties reveals that the substitution of La3+ ions significantly enhances electrical conductivity and simultaneously introducing defects that substantially reduce lattice thermal conductivity. We achieved a maximum thermoelectric figure of merit (ZT) of approximately 0.27 at about 1200 K for the sample with a nominal composition of Ca0.8La0.2TiO3. This study is intended as a reference to experimentalists working in MSS for synthesizing CaTiO3-based ceramics and discloses the transport properties of La-doped CaTiO3-based ceramics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.