Volterra series is a widely used tool for identifying physical systems with polynomial nonlinearities. In this approach, the Volterra kernels expanded using Kautz functions can be identified using several techniques to optimize the filters’ poles. This methodology is very efficient when the system observations are not subject to high noise-induced variabilities (uncertainties). However, this optimization procedure may not be effective when the uncertainty level is increased since the optimal value might be susceptible to small perturbations. Seeking to overcome this weakness, the present work proposes a new stochastic method of identification based on the Volterra series, which does not solve an optimization problem. In this new approach, the Volterra kernels are described as stochastic processes. The parameters of Kautz filters are considered independent random variables so that their probability distribution captures the variabilities. The effectiveness of the new technique is tested experimentally in a nonlinear mechanical system. The results show that the identified stochastic Volterra kernels can reproduce the nonlinear dynamics characteristics and the data variability.
Read full abstract