Abstract

O presente artigo apresenta uma visão geral do estado da arte na área de identificação de sistemas utilizando modelos dinâmicos com estrutura desenvolvida através de bases de funções ortonormais, como as funções de Laguerre, Kautz ou funções ortonormais generalizadas. Discute-se as vantagens e possíveis limitações desse tipo de estrutura bem como os fundamentos matemáticos dos modelos correspondentes nos contextos de identificação linear, linear com incertezas paramétricas (identificação robusta) e não linear, incluindo uma revisão bibliográfica abrangente sobre o tema. Diferentes realizações de modelos com funções de base ortonormal, a saber, modelos lineares, de Volterra, fuzzy e neurais, são detalhadas e discutidas comparativamente em termos de capacidade de representação, parcimônia, complexidade de projeto e interpretabilidade. Aspectos práticos da identificação desses modelos são também apresentados e ilustrados através de dois casos de estudo envolvendo um processo simulado de polimerização isotérmica.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.