Abstract
This paper provides an overview of system identification using orthonormal basis function models, such as those based on Laguerre, Kautz, and generalised orthonormal basis functions. The paper is separated in two parts. The first part of the paper approached issues related with linear models and models with uncertain parameters. Now, the mathematical foundations as well as their advantages and limitations are discussed within the contexts of non-linear system identification. The discussions comprise a broad bibliographical survey of the subject and a comparative analysis involving some specific model realisations, namely, Volterra, fuzzy, and neural models within the orthonormal basis functions framework. Theoretical and practical issues regarding the identification of these non-linear models are presented and illustrated by means of two case studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Modelling, Identification and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.