The purpose of this article is to introduce a Kantorovich variant of Szász-Mirakjan operators by including the Dunkl analogue involving the Appell polynomials, namely, the Szász-Mirakjan-Jakimovski-Leviatan-type positive linear operators. We study the global approximation in terms of uniform modulus of smoothness and calculate the local direct theorems of the rate of convergence with the help of Lipschitz-type maximal functions in weighted space. Furthermore, the Voronovskaja-type approximation theorems of this new operator are also presented.
Read full abstract