The present research evaluated the positive effects of dietary thiamin (vitamin B1) levels on the growth performance, serum biochemistry factors, immune response, and antioxidant activity of great sturgeon (Huso huso) juveniles. Thiamin was included in diets with levels of 0 (control, T0), 7 (T7), 15 (T15), and 25 (T25) mg/kg diet. Measurements of thiamin levels in diets indicated that they contained 1.80 (T0), 8.02 (T7), 16.2 (T15), and 26.6 (T25) mg thiamin/kg feed. Sturgeon juveniles (240 individuals) with average weight of 44.8 ± 1.96g were distributed into 12 tanks, and fed with the experimental diets for 8 weeks. Final weight, body weight gain (%), specific growth rate, and feed conversion ratio (FCR) of great sturgeon were significantly influenced by dietary thiamin levels, and the maximum fish performance (P < 0.05) was obtained at a level of 15mg/kg diet. The trypsin, chymotrypsin, creatine kinase, lipase, α-amylase, and alkaline phosphatase activities were notably (P < 0.05) affected by the dietary thiamin levels. The glucose content was not significantly (P > 0.05) different among the experimental treatments. Diets supplemented with thiamine increased significantly (P < 0.05) triglyceride, cholesterol, and total protein levels accompanied with significant (P < 0.05) decreases in aminotransferase aspartate and alanine aminotransferase activities. Serum antioxidant enzymes were remarkably (P < 0.05) higher, while serum malondialdehyde was significantly (P < 0.05) lower in the thiamin-treated fish compared with the control group. Total immunoglobulin, lysozyme, and ACH50 values were significantly (P < 0.05) higher in fish fed with thiamin-supplemented diets than in the control group. The results of the present study demonstrated that dietary thiamin have an important role in enhancing the growth performance, immune response, and antioxidant activity of great sturgeon. Based on the regression fitting curve of final weight, weight gain, specific growth rate, and FCR values, the optimal level of thiamin is found to be 15.0-17.5mg/kg diet.
Read full abstract