cDNA clones of mRNAs for the major nucleocapsid protein (NP), the nucleocapsid P protein plus the nonstructural C protein (P+C), and the matrix protein (M) of human parainfluenza virus type 3 (PF3) were identified by hybrid arrest and hybrid selection of in vitro translation. Previously, cDNA clones were identified and sequenced for the hemagglutinin-neuraminidase glycoprotein (HN) and the fusion glycoprotein (F) mRNAs (N. Elango, J. E. Coligan, R. C. Jambou, and S. Venkatesan, J. Virol. 57:481-489, 1986; M. K. Spriggs, R. A. Olmsted, S. Venkatesan, J. E. Coligan, and P. L. Collins, Virology 152:241-251, 1986). Synthetic oligonucleotides, designed from nucleotide sequences of the cDNAs, were used to direct dideoxynucleotide sequencing of gene junctions in PF3 genomic RNA (vRNA). From sequencing of vRNA, a sixth viral gene was detected and identified as the large nucleocapsid protein (L) gene by hybridization of a synthetic oligonucleotide to intracellular PF3 mRNAs separated by gel electrophoresis. The order of the six PF3 genes on vRNA was 3'-NP-P+C-M-F-HN-L-5'. The five intergenic regions consisted of the trinucleotide 3'-GAA. The PF3 genes initiated with semiconserved 10-nucleotide gene-start sequences and terminated with semiconserved 12-nucleotide gene-end sequences. The M gene terminated with an aberrant gene-end sequence; analysis of intracellular mRNA showed that this aberrant sequence correlated with a disproportionately high accumulation of readthrough mRNA. These studies showed that PF3 encodes six unique mRNAs (NP, P+C, M, F, HN, and L) that encode seven proteins (NP, P, C, M, F, HN, and L) and provided evidence of a close relationship between PF3 and Sendai (murine parainfluenza type 1) viruses.