The jumping translocation (JT) is a rare chromosomal abnormality in which a specific chromosomal segment translocates onto the ends of various chromosomes (jumps). In most cases, the region distal to 1q21 jumps onto numerous different telomeres. Here we report a molecular study of the JT involving 1q21 found in a patient with acute myelomonocytic leukemia that had transformed from myelodysplastic syndrome (MDS). This is the first report describing the analysis of the molecular structure of the JT. We demonstrated the presence of a stretch of telomeric repeats at the breakpoint by means of a fluorescence in situ hybridization experiment, molecular cloning, and nucleotide sequencing of the fused region. A significant amount of variant telomeric repeats (a telomeric sequence having one-base mismatch within the authentic telomeric repeat TTAGGG) was found in this region. The variant telomeric repeat has been shown to be present in the proximal region of telomeres and does not perform telomeric functions by itself. Therefore, these results indicated that the telomeres had already been critically shortened when the jumps occurred. We suggest that the extended proliferation of cancer cells during the premalignant stage, such as MDS, results in chromosomal instability due to the loss of telomeric functions.