Research has demonstrated that performing a secondary task during a drop vertical jump (DVJ) may affect landing kinetics and kinematics. To examine the differences in the trunk and lower extremity biomechanics associated with anterior cruciate ligament (ACL) injury risk factors between a standard DVJ and a DVJ while heading a soccer ball (header DVJ). Descriptive laboratory study. Participants comprised 24 college-level soccer players (18 female and 6 male; mean ± SD age, 20.04 ± 1.12 years; height, 165.75 ± 7.25 cm; weight, 60.95 ± 8.47 kg). Each participant completed a standard DVJ and a header DVJ, and biomechanics were recorded using an electromagnetic tracking system and force plate. The difference (Δ) in 3-dimensional trunk, hip, knee, and ankle biomechanics between the tasks was analyzed. In addition, for each biomechanical variable, the correlation between the data from the 2 tasks was calculated. Compared to the standard DVJ, performing the header DVJ led to significantly reduced peak knee flexion angle (Δ = 5.35°; P = .002), knee flexion displacement (Δ = 3.89°; P = .015), hip flexion angle at initial contact (Δ = -2.84°; P = .001), peak trunk flexion angle (Δ = 13.11°; P = .006), and center of mass vertical displacement (Δ = -0.02m; P = .010), and increased peak anterior tibial shear force (Δ = -0.72 N/kg; P = .020), trunk lateral flexion angle at initial contact (Δ = 1.55°; P < .0001), peak trunk lateral flexion angle (Δ = 1.34°; P = .003), knee joint stiffness (Δ = 0.002 N*m/kg/deg; P = .017), and leg stiffness (Δ = 8.46 N/kg/m; P = .046) compared to those in standard DVJs. In addition, individuals' data for these variables were highly and positively correlated between conditions (r = 0.632-0.908; P < .001). The header DVJ task showed kinetic and kinematic parameters that suggested increased risk of ACL injury as compared with the standard DVJ task. Athletes may benefit from acquiring the ability to safely perform header DVJs to prevent ACL injury. To simulate real-time competition situations, coaches and athletic trainers should incorporate such dual tasks in ACL injury prevention programs.
Read full abstract