Alicyclobacillus spp. are crucial factors affecting the quality of fruit juice, so it is very important to control their contamination. In this study, the inactivation activity and mechanism of high-voltage pulsed electric fields (HVPEF) combined with antibacterial agents against Alicyclobacillus spp. in apple juice were investigated. It was found that under the optimal conditions of electric field strength 9.6kV/cm, treatment time 20min, frequency 1000Hz, and duty ratio 50%, HVPEF treatment could reduce bacteria by 1.89-4.76 log CFU/mL. Moreover, the inactivation activities of six antibacterial agents (propyl paraben, glycerol monocaprate, octyl gallate, heptyl paraben, nisin, carvacrol) alone and their combination with HVPEF were further investigated. The results showed that with the combined treatment, the minimum bactericidal concentrations of carvacrol, nisin, and heptyl paraben were reduced by >50% to 1mg/mL, 10IU/mL, and 0.02mg/mL, respectively. Based on this, the most resistant strain of A. acidoterrestris (DSM 3922) was identified to elucidate the inactivation mechanism. It was demonstrated that the antibacterial process could alter the permeability and fatty acid composition of the cell membrane, causing the cells to deform and shrink, leading to leakage of intracellular proteins, and also affect the synthesis of ROS and ATP, ultimately resulting in bacterial death. In addition, the various treatments had no significant effect on the soluble solids content, titratable acid, soluble sugar content, organic acids and aroma components of apple juice. The combination of HVPEF treatment and antibacterial agents could effectively maintain the quality of apple juice.
Read full abstract