Infrared (IR) magneto-optical (MO) bi-imaging is an innovative method for detecting weld defects, and it is important to process both IR thermography and MO imaging characteristics of weld defects. IR thermography and MO imaging can not only run simultaneously but can also run separately in special welding processes. This paper studies the sensing processing of eddy current IR thermography and MO imaging for detecting weld defects of laser spot welding and butt joint laser welding, respectively. To address the issues of high-level noise and low contrast in eddy current IR detection thermal images interfering with defect detection and recognition, a method based on least squares and Gaussian-adaptive bilateral filtering is proposed for denoising eddy current IR detection thermal images of laser spot welding cracks and improving the quality of eddy current IR detection thermal images. Meanwhile, the image gradient is processed by Gaussian-adaptive bilateral filtering, and then the filter is embedded in the least squares model to smooth and denoise the image while preserving defect information. Additionally, MO imaging for butt joint laser welding defects is researched. For the acquired MO images of welding cracks, pits, incomplete fusions, burn-outs, and weld bumps, the MO image processing method that includes median filtering, histogram equalization, and Wiener filtering was used, which could eliminate the noise in an image, enhance its contrast, and highlight the weld defect features. The experimental results show that the proposed image processing method can eliminate most of the noise while retaining the weld defect features, and the contrast between the welding defect area and the normal area is greatly improved. The denoising effect using the Natural Image Quality Evaluator (NIQE) and the Blind Image Quality Index (BIQI) has been evaluated, further demonstrating the effectiveness of the proposed method. The differences among weld defects could be obtained by analyzing the gray values of the weld defect MO images, which reflect the weld defect information. The MO imaging method can be used to investigate the magnetic distribution characteristics of welding defects, and its effectiveness has been verified by detecting various butt joint laser welding weldments.
Read full abstract