Bicycle design largely contradicts human motion, necessitating consideration of both the bicycle structure and the kinematic efficiency in the dimensions of the rider’s limbs, as well as human factor engineering, i.e. comfortability. By focusing on the kinematic model of 5-bar linkage and joints workspace, this study examines the most appropriate bicycle design and the riding posture to ensure that muscles can produce the effective moment and increase driving efficiency of a crank necessary. For upright, racing and recumbent bicycle types, assumptions are made regarding mobility analysis and the system of man-machine systems of bicycles estimated as well. Simulation results can identify the major dimensions of bicycle designing for different riders efficiently by inputting physical measurements of the rider and the angle range of driving force, subsequently increasing the riding efficiency to decrease the load of lower limbs of riders and satisfying ergonomic requirements of bicycle riders.
Read full abstract