Abstract A skill baseline for five-day, 34-, 50-, and 64-knot (1 kt = 0.514 m s−1) tropical cyclone (TC) wind radii forecasts is described. The Markov Model CLiper (MMCL) generates a sequence of 12-h forecasts out to a forecast length limited only by the length of the forecast track and intensity. The model employs a climatology of TC size based on infrared satellite imagery, a Markov chain, and a basin-specific drift. MMCL uses the initial wind radii and initial forecast track and intensity as input. Unlike the previously developed wind radii climatology and persistence model (DRCL) that reverts to a climatological size and shape after approximately 48 h, MMCL retains more of its initial size and asymmetry and is likely more palatable for use in operational forecasting. MMCL runs operationally in the western North Pacific basin, the North Indian Ocean, and the Southern Hemisphere for the Joint Typhoon Warning Center (JTWC) in Pearl Harbor, Hawaii. This work also describes the development of Atlantic and eastern North Pacific versions of MMCL. MMCL’s formulation allows unlimited extension of forecast lead time without reverting to a generic climatological size and shape. Independent forecast comparisons between MMCL and DRCL for the 2020–2022 seasons demonstrates that MMCL’s mean absolute errors are generally smaller and biases are closer to zero in North Atlantic, and eastern North Pacific basins, and in the Southern Hemisphere. This validation includes a few example forecasts and demonstrates that MMCL can be used both as a baseline for assessing wind radii forecast skill and operational use.
Read full abstract