Numerous damage detection methods have been discovered to provide an early warning at the earliest possible stage against structural damage or any type of abnormality in the wind turbine system. In this paper, a comprehensive literature review is carried out in the field of damage detection for wind turbine systems. Several modern signal processing techniques including time-domain and frequency-domain analysis, joint time–frequency methods, entropy-based damage detection, supervisory control and data acquisition (SCADA), and machine learning approaches are all emphasized, and how to estimate the damage in wind turbine system by utilizing these various approaches is discussed. It is concluded that each of these methods offers its own unique merits and shortcomings in detecting certain types of damage with various levels of complexity. This research paper is aimed to inform the readers and experts about the damage detection techniques of the wind turbine system and fault diagnosis with various advanced signal processing methods.
Read full abstract