AbstractWhen generating simultaneous joint movements of a humanoid with multiple degrees of freedom to replicate human-like movements, the approach of joint synergy can facilitate the generation of whole-body robotic movement with a reduced number of control inputs. However, the trade-off of minimizing control inputs and keeping characteristics of movements makes it difficult to improve movement performance in a simple control manner. In this paper, we introduce an approach by connecting and constraining these joints. It is inspired by the fascia network of the human body, which constrains the whole-body movements of a human. Compared to when only joint synergy is used, the effectiveness of the proposed method is verified by calculating the errors of joint positions of generated movements and human movements. The paper provides a detailed exploration of the proposed method, presenting simulation-experimental results that affirm its effectiveness in generated movements that closely resemble human movements. Furthermore, we provide one possible method on how these concepts can be implemented in actual robotic hardware, offering a pathway to improve movement control in humanoid robots within their mechanical limitations.
Read full abstract