Abstract

In this letter, we propose an asymptotically stable joint-space dynamical system (DS) that captures desired behaviors in joint-space while converging toward a task-space attractor in both position and orientation. To encode joint-space behaviors while meeting the stability criteria, we propose a DS constructed as a linear parameter varying system combining different behavior synergies and provide a method for learning these synergy matrices from demonstrations. Specifically, we use dimensionality reduction to find a low-dimensional embedding space for modulating joint synergies, and then estimate the parameters of the corresponding synergies by solving a convex semidefinite optimization problem that minimizes the joint velocity prediction error from the demonstrations. Our proposed approach is empirically validated on a variety of motions that reach a target in position and orientation, while following a desired joint-space behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.