Tacrolimus (TAC) has high pharmacokinetic (PK) variability during the early transplantation period. The relationships between whole-blood and intracellular TAC concentrations and clinical outcomes remain controversial. This study identifies the factors affecting the PK variability of TAC and characterizes the relationships between whole-blood and intracellular TAC concentrations. Data regarding whole-blood TAC concentrations of 1,787 samples from 215 renal transplant recipients (<90 days postoperative) across two centers and intracellular TAC concentrations (648 samples) digitized from previous studies were analyzed using nonlinear mixed-effects modeling. The effects of potential covariates were screened, and the distribution of whole-blood to intracellular TAC concentration ratios (RWB:IC) was estimated. The final model was evaluated using bootstrap, goodness of fit, and prediction-corrected visual predictive checks. The optimal dosing regimens and target ranges for each type of immune cell subsets were determined using Monte Carlo simulations. A two-compartment model adequately described the data, and the estimated mean TAC CL/F was 23.6 L·h−1 (relative standard error: 11.5 %). The hematocrit level, CYP3A5*3 carrier status, co-administration with Wuzhi capsules, and tapering prednisolone dose may contribute to the high variability of TAC PK variability during the early post-transplant period. The estimated RWB:IC of all TAC concentrations in peripheral blood mononuclear cells (PBMCs) was 4940, and inter-center variability of PBMCs was observed. The simulated TAC target range in PBMCs was 20.2–85.9 pg·million cells−1. Inter-center variability in intracellular concentrations should be taken into account in further analyses. TAC dosage adjustments can be guided based on PK/PD variability and simulated intracellular concentrations.