AbstractWhen monitoring risk in public health, count data commonly exhibit an excessive number of zero, and the zero‐inflated Poisson (ZIP) model is often used to fit this type of data. Most previous methods for monitoring of the ZIP model have focused on the changes in the location parameter and the existence of the scale parameter and usually assumed that the scale parameter is zero in the H0 stage. However, in an objective environment, data often have certain fluctuations, meaning that the scale parameter always exists. Therefore, it is more meaningful to monitor the changes in the scale parameter on top of the predefined baseline than to monitor its existence. In this study, we derive a score test statistic based on the generalized Henderson's joint likelihood function, construct a risk‐adjusted exponentially weighted moving average (EWMA) control chart to monitor the variability of the random effects variance component in the ZIP mixed‐effects model. And the convergence property of the score test statistic is proved through derivation, which shows that the new method has theoretical reliability. The simulation results Indicate that when the scale parameter has different predefined baselines and different variation amplitudes, the proposed method is more effective than the existing RA‐ZIP and PR‐ZIP control charts. In addition, the proposed method is applied to real data from a Hong Kong hospital for online influenza surveillance to demonstrate its practicability.