Interpreters need to screen and select the most geologically robust inversion products from increasingly larger data volumes, particularly in the absence of significant well control. Seismic processing and inversion routines are devised to provide reliable elastic parameters ([Formula: see text] and [Formula: see text]) from which the interpreter can predict the fluid and lithology properties. Seismic data modeling, for example, the Shuey approximations and the convolution inversion models, greatly assist in the parameterization of the processing flows within acceptable uncertainty limits and in establishing a measure of the reliability of the processing. Joint impedance facies inversion (Ji-Fi®) is a new inversion methodology that jointly inverts for acoustic impedance and seismic facies. Seismic facies are separately defined in elastic space ([Formula: see text] and [Formula: see text]), and a dedicated low-frequency model per facies is used. Because Ji-Fi does not need well data from within the area to define the facies or depth trends, wells from outside the area or theoretical constraints may be used. More accurate analyses of the reliability of the inversion products are a key advance because the results of the Ji-Fi lithology prediction may then be quantitatively and independently assessed at well locations. We used a novel visual representation of a confusion matrix to quantitatively assess the sensitivity and uncertainty in the results when compared with facies predicted from the depth trends and well-elastic parameters and the well-log lithologies observed. Thus, using simple models and the Ji-Fi inversion technique, we had an improved, quantified understanding of our data, the processes that had been applied, the parameterization, and the inversion results. Rock physics could further transform the elastic properties to more reservoir-focused parameters: volume of shale and porosity, volumes of facies, reservoir property uncertainties — all information required for interpretation and reservoir modeling.
Read full abstract