Traditional gait analysis systems are typically complex to operate, lack portability, and involve high equipment costs. This study aims to establish a musculoskeletal dynamics calculation process driven by Azure Kinect. Building upon the full-body model of the Anybody musculoskeletal simulation software and incorporating a foot-ground contact model, the study utilized Azure Kinect-driven skeletal data from depth videos of 10 participants. The in-depth videos were prepossessed to extract keypoint of the participants, which were then adopted as inputs for the musculoskeletal model to compute lower limb joint angles, joint contact forces, and ground reaction forces. To validate the Azure Kinect computational model, the calculated results were compared with kinematic and kinetic data obtained using the traditional Vicon system. The forces in the lower limb joints and the ground reaction forces were normalized by dividing them by the body weight. The lower limb joint angle curves showed a strong correlation with Vicon results (mean ρ values: 0.78 ~ 0.92) but with root mean square errors as high as 5.66°. For lower limb joint force prediction, the model exhibited root mean square errors ranging from 0.44 to 0.68, while ground reaction force root mean square errors ranged from 0.01 to 0.09. The established musculoskeletal dynamics model based on Azure Kinect shows good prediction capabilities for lower limb joint forces and vertical ground reaction forces, but some errors remain in predicting lower limb joint angles.