Abstract

In this study, to address the issues of tooth tip operation discontinuity and jitter during autonomous excavator operation, a multi-segment mixed interpolation method utilizing different higher-order polynomials has been proposed. This approach is designed to optimize the tooth tip trajectory of the excavator under multiple constraints, resulting in a smoother trajectory. Specifically, the single-bucket excavator was chosen as the research object, and three different high-order mixed polynomials were utilized to interpolate the trajectory of the digging discrete points. Through a comparative analysis under multiple constraints, this study explored and analyzed the joint angle, angular velocity, and angular acceleration curves of each excavator’s joint. An experimental platform was established to investigate the hydraulic system of an excavator, and the optimal trajectory was controlled using a high-order mixed polynomial interpolation. The results of this study demonstrate that the tracking accuracy of the excavator’s actuator under the optimal interpolation strategy is high, with a maximum displacement deviation of ±3 mm. Additionally, during operation, the excavator manipulator runs smoothly and continuously with minimal flexible impact and vibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.