Identifying unambiguously the presence of a bubble in an asset price remains an unsolved problem in standard econometric and financial economic approaches. A large part of the problem is that the fundamental value of an asset is, in general, not directly observable and it is poorly constrained to calculate. Further, it is not possible to distinguish between an exponentially growing fundamental price and an exponentially growing bubble price. In this paper, we present a series of new models based on the Johansen–Ledoit–Sornette (JLS) model, which is a flexible tool to detect bubbles and predict changes of regime in financial markets. Our new models identify the fundamental value of an asset price and a crash nonlinearity from a bubble calibration. In addition to forecasting the time of the end of a bubble, the new models can also estimate the fundamental value and the crash nonlinearity, meaning that identifying the presence of a bubble is enabled by these models. In addition, the crash nonlinearity obtained in the new models presents a new approach to possibly identify the dynamics of a crash after a bubble. We test the models using data from three historical bubbles ending in crashes from different markets. They are the Hong Kong Hang Seng index 1997 crash, the S&P 500 index 1987 crash (Black Monday) and the Shanghai Composite index 2009 crash. All results suggest that the new models perform very well in describing bubbles, forecasting their ending times and estimating fundamental value and the crash nonlinearity. The performance of the new models is tested under both the Gaussian residual assumption and non-Gaussian residual assumption. Under the Gaussian residual assumption, nested hypotheses with the Wilks' statistics are used and the p-values suggest that models with more parameters are necessary. Under the non-Gaussian residual assumption, we use a bootstrap method to obtain type I and II errors of the hypotheses. All tests confirm that the generalized JLS models provide useful improvements over the standard JLS model.