AbstractThe poly 2‐hydroxy propylmethacrylate‐methyl methacrylate (PHPMA‐MMA)/SiO2 composite, derived from 2‐hydroxy propylmethacrylate (HPMA), methyl methacrylate (MMA), and tetraethoxysilane (TEOS), was used to synthesize polyamide 66(PA66)/SiO2 organic‐inorganic hybrid material. X‐ray diffraction (XRD) was used to investigate the lattice spacing change of the PA66/SiO2 hybrid material. It was found that the addition of PHPMA‐MMA/SiO2 composite nearly did not change the crystal form of PA66. The nonisothermal crystallization kinetics of PA66 and PA66/SiO2 hybrid material was investigated by differential scanning calorimetry (DSC) with various cooling rates. At every given cooling rate, the start crystallization temperature of the PA66/SiO2 hybrid material was higher than that of PA66, while the crystallization temperature range was narrower than that of PA66. Avrami analysis modified by the Jeziorny method, the Ozawa method, and a method developed by Liu were employed to describe the nonisothermal crystallization process of the samples. The results showed that the Jeziorny method and the Ozawa method were not suitable to describe the nonisothermal crystallization process of PA66/SiO2 hybrid material; however, when the relative degree of crystallinity X (t) was less than 1 − 1/e, ln [− ln (1 − X (t))] was still linear to lnt. The Liu method was successful to describe the nonisothermal crystallization processes for both PA66 and the PA66/SiO2 hybrid material. It was confirmed that the presence of PHPMA‐MMA/SiO2 composite could increase the crystallization rate and had a hetero phase nucleation effect on the PA66 matrix. Moreover, the introduction of PHPMA‐MMA/SiO2 could improve the crystallization active energy ▵E calculated by the Kissinger equation, attributing to the strong interaction between the polyamide chains and the PHPMA‐MMA/SiO2 composite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 810–817, 2006