We present a new interpretation of the optical knot, HST-1, in the jet of M 87. High-sensitivity 22 GHz Very Large Array images have located HST-1 to within 6 mas of the jet axis immediately upstream. Based on 1.7 GHz Very Long Baseline Array images of a bright flare in 2005, we see that preponderance of emission in the early stages originates from an elongated region that is tilted 12.5° from the jet axis. The superluminal motion, shape, location, and the large jet-aligned optical/UV polarization suggest an identification with the putative relativistic spine of the jet. As such, energy flux estimates for HST-1, ∼870 mas from the nucleus, published in 2006, indicate that the central engine injected, Qspine ≈ 2.5 × 1041 ergs s−1, into the base of the spine about 200 yr earlier. Furthermore, previous studies have revealed a tubular protonic jet on sub-mas scales that envelopes a low luminosity core, presumably the faint spine base. It was estimated that the central engine injected, Qtubular jet ≈ 6.1 × 1041 ergs s−1, about 1.5 yr earlier. If one component of the jet is inherently more powerful, a firm constraint on total jet power in the recent past would then exist. If the emitted jet is inherently dominated by the spine (tubular jet), then the total bilaterally symmetric jet power emitted from the central engine was < 4Qspine ≈ 1.0 × 1042 ergs s−1 (< 4Qtubular jet ≈ 2.4 × 1042 ergs s−1) ∼200 (∼1.5) yr earlier. Assuming a nearly constant central engine injected jet power for ∼200 yr indicates a total jet power of ≲2 × 1042 ergs s−1 in epochs of modern observation or ≲3.5% jet production efficiency for an accretion rate of 0.001 M⊙ yr−1. Seemingly, the focus of Event Horizon Telescope Collaboration (EHTC) numerical models should be biased toward jet powers of ≲2 × 1042 ergs s−1, as opposed to larger estimates from ejections many centuries or millennia earlier.