<abstract> <p>Agriculture's sustainability is a subject of concern, and digital farming technology has been proposed to solve this problem. The digital revolution is transforming agriculture by utilizing modern equipment, computerized tools, and information and communication technology (ICT) to improve decision-making and productivity. Digital farming technology enables even inexperienced farmers to apply such techniques by using the IoT and AI to collect and analyze data from their farming practices and the surrounding environment to improve productivity. The versatile mapping platform Mapbox is utilized to construct the map, which allows for custom data layer integration and interactive features. Backend development is performed using the Java programming language, which facilitates seamless data processing, storage, and retrieval. The interactive map allows for dynamic overlays of crucial information, such as plot numbers, measurements, crop details, crop health assessments, NDVI, RGB, and DEM. The study involved data collection, analysis of the data, and thematic layer development using GIS to create interactive maps. In this research, two sets of DJI drones, Agisoft Metashape software, QGIS, and Mapbox were used to collect and prepare the data for the interactive map. The data was used to create the results, which were web maps that had several interactive features, such as "display popup on hover, " "swipe between maps, " and "change a map's style." The result was a thematic layer of information such as RGB, NDVI, DEM, and other field information. This research demonstrated the benefits and applicability of information technology for digital transformation in agriculture under the DX Project launched at Niigata University, Japan. This aids in the goal of producing interactive agricultural maps based on map classification, content element analysis, the development of GIS capabilities, and remote sensing data.</p> </abstract>
Read full abstract